Super Strong Artificial Muscles: Interactive Soft Robotics

An Italian team of researchers lead by Prof. Marco Fontana, in collaboration with the departments of Industrial Engineering of the Universities of Trento and Bologna, have created an Electrostatic Bellow Muscle (EBM) to fabricate efficient small-scale robots. The innovative robotic muscle has potential of powering itself for a long period of time beyond its preliminary charge.

Read More

Interview: Professor Sheng Xu, Nanotech Scientist at University of California San Diego

It’s our honour to have Professor Sheng Xu from University of California San Diego with us today. Dr Xu’s research interests focus on the understanding of the electrical and mechanical behaviors of inorganic materials when they are engineered into a soft format; which can further be morphed into soft electronics, nano electronics and energy harvesting/storage devices. He obtained his B.S. in Chemistry and Molecular Engineering from Peking University in Beijing, China in 2006. While he received his Ph.D. in Materials Science and Engineering in 2010 at Georgia Institute of Technology,…

Read More

One Epidermal Patch to track Cardiovascular and Multiple Biomarkers: Wearable Microelectronics

Monitoring cardiovascular signals and multiple biochemical levels together on one tiny wearable patch has always been a far-fetched dream in the nanotech world. Scientists across the globe are still trying to figure it out however, researchers at the University of California San Diego have done something extraordinary in soft, stretchy skin patch.

Read More

Tidal Disruption causes Dark Matter to Evaporate: Intra Galactic Interactions

Dark matter is one of the key ingredients in the understanding of evolution and in the formation of galaxies. Majority of scientists are of the view that dark matter consists of weakly interacting massive particles (WIMP). It is because of their weak interactions with matter that we see around, it becomes extremely difficult to detect.

Read More

Tactile Sensation For Soft Robotics: Stretchable Sensor

Sensors that could stretch will pave way towards new intelligent soft systems. Working on the same line of thought Cornell researchers have combined fiber-optic sensor with no so expensive LEDs (light-emitting diode) and dyes. The outcome is a form of a stretchable “skin” that is able to spot topographical distortions like pressure, bending and strain.

Read More

Octopus Inspired Device For Transferring Delicate Implants: Biomimicry

Researchers at University of Illinois at Urbana-Champaign and collaborators have come with up an innovative way to surgical grip the fragile tissue grafts. Generally, during the ultra-thin tissue grafts, the grip leads to the collapse of structural integrity and functionality of soft tissues transplants. It has always been a challenge to preserve them during grafting and transferring process.

Read More

Microfluidic Squeezing Leads To Stemness: Cell Engineering

In an interesting finding, scientists at Massachusetts Institute of Technology and Boston Children’s Hospital have discovered that physically pressing microscopic intra-cellular structures together can trigger cells to grow faster.  This phenomenon at microscopic level resembles the spread of things like ideas, interests and even infections within a close proximity of people.

Read More